was placed in the freezer (-20°) . The crystalline material which separated was collected (3.0 g.) and recrystallized from acetonitrile to yield **2.3** g. **(55%** yield) of the pure salt. The infrared spectrum was identical to that of an authentic sample of this salt.4

B. Tetraethyl Ethylenetetracarboxylate (II).—The following reaction illustrates a typical procedure, and the pertinent data for the other reactions can be found in Table I.

A solution of diethyl dibromomalonate (8.0 g., **0.025** mole) and sodium trichloroacetate **(4.7** g., **0.025** mole) in **25** ml. of **1,2** dimethoxyethane was refluxed under a nitrogen atmosphere for I hr. The v.p.c. analysis of the mixture using a 12-ft. column of **20Gj,** tritolyl phosphate on chromosorb W indicated the presence of *2'3* carbon tetrachloride and **10%** bromotrichloromethane in the solvent (raw data). The precipitated salt was filtered from the hot solution and washed with ether. The solvent was removed *zn vacuo* and an ethanol-hexane mixture **(20** ml.) was added to the resultant red oil. After standing in the freezer overnight, pale yellow crystals separated. Recrystallization from ethanol-hexane yielded 2.6 **g**. (66% yield) of the pure product of n1.p. **52-53"** (lit.6 m.p. **52-53").**

C. Triethyl 1,2,3-Tricyanocyclopropane-l,2,3-tricarboxylate (III).-Ethyl bromocyanoacetste **(10** g., **0.05** mole) and sodium trichlornacetate **(9.7** g., 0 0.5 mole) were refluxed in **50** ml. of **1,2** dimethoxyethane under a nitrogen atmosphere for 1 hr. solid **(3.0** g.) was filtered from the hot solution and washed with hot solvent. The filtrate was concentrated to a red oil. Ethanol **(15** ml.) was added and the mixture was allowed to stand in the freezer overnight. The crystalline solid was collected (3.5 g., 50% yield) and had m.p **122-123"** (lit. m.p. **122-123").** The infrared spectrum was identical to that of an independently prepared sample.⁷

The ethyl dibromocyanoacetate run was performed in the same manner using a longer reflux period.

Acknowledgment.-This research was supported in part from a grant from the National Science Foundation **(NSF** G-19490).

Reaction of Octaphenylcyclotetra silane with Mercuric Acetate

HENRY GILMAN AND WILLIAM *H.* **ATWELL**

Department **of** *Chemistry, Iowa State University, Ames, Iowa*

Received Mal! 6, 1963

Among the compounds isolated by Kipping from the reaction of dichlorodiphenylsilane with sodium, was a material which he designated as compound "A".1 In order to explain the high reactivity of this compound in free radical-type reactions, he assigned to Compound " A " a biradical structure $(...SiPh_2SiPh_2SiPh_2SiPh_2...).$ ^{1.2} However, this compound has recently been shown to be octaphenylcyclotetrasilane **(I).3** The high reactivity

of I has been attributed to the strained four-membered ring system. For example, I is readily cleaved by certain metal⁴ and nonmetal⁵ halides, halogens,^{3b,6} organometallic compounds, 7 and by numerous polyhalo-

(6) J. M. Kraemer, unpublished studies.

organic compounds.6 In addition, I was found to reduce an ethanolic silver nitrate solution at room tem $perature.⁵$ A similar reduction previously has been reported for the strained ring compounds, 1,1,3,3-tetra**methyl-1,3-disilacyclobutane.*** Under the same conditions, we obtained no observable reduction with decaphenylcyclopentasilane.

We now wish to report the cleavage of I by mercuric acetate to give 1.4 -diacetoxy-1,1,2,2,3,3,4,4-octaphenyltetrasilane (11). An alternate synthesis of I1 was achieved by heating **1,1,2,2,3,3,4,4-octaphenyltetra**silane $(III)^{10}$ and mercuric acetate in glacial acetic $\arctan \frac{1}{2}$ In addition, II was obtained by refluxing the previously described 1,4-dichloro-1,1,2,2,3,3,4,4-octaphenyltetrasilane (IV)^{2b,3} in acetic anhydride.¹² Further proof of structure was obtained by hydrolysis of I1 to the monoxide V.¹³

The infrared and n.m.r. spectra of I1 also were examined and found to be in agreement with the proposed structure.

When either hexaphenyldisilane or decaphenylcyclopentasilane⁹ was treated with mercuric acetate under even more forcing conditions, the starting materials were recovered in good yields. Under such conditions where silicon-silicon bond cleavage is not observed, it may be possible to employ mercuric acetate to effect nuclear substitution. **l4**

Experimental16

1,4-Diacetoxy-1,1,2,2,3,3,4,4-octaphenyltetrasilane (II). From **Octaphenylcyclotetrasilane** (I) **and Mercuric Acetate** .-Fifteen grams **(0.02** mole) of octaphenylcyclotetrasilane and **13.1** g. **(0.041** mole) of mercuric acetate in *ca.* **150** ml. of sodium-dried benzene were heated at reflux for **24** hr. **A** small amount of mercury was observed on the bottom of the flask. The tan mixture was cooled and filtered. Evaporation of the solvent gave **16.62** g. (95.87,) of **a** light yellow solid, m.p. **212-234".** gave 16.62 g. (95.8%) of a light yellow solid, m.p. 212-234°.
Recrystallization from a mixture of benzene and petroleum ether (b.p. 60-70°) gave 13.1 g. (79%) of a white solid, m.p. 233-235°.

(9) H. Gilman and *G. L. Schwebke, J. Am. Chem. Soc.*, 85, 1016 (1963). **(10) H. J.** S. **Winkler and H. Qilnian,** *J. Org. Chem.,* **27, 254 (10G2).**

- **(13) A.** W. P. **Jarvie, H. J.** S. **Winkler, and H. Gilman,** *J.* **Org.** *Chem.. 21,* 014 (1902).
	- **(14)** K. **A. Kobe and P. F. Lueth, Jr.,** *Ind. Eng. Chem..* **34,** 309 (1942).
- (15) **A11 reactions were carried out under an atmosphere of dry. oxygenfree nitrogen and all melting points are uncorrected.**

⁽¹⁾ F. *S.* **Kipping and J. E. Sands. J.** *Chem. Soc.,* **119,** *830,* 848 (1921).

⁽²⁾ **(a)** F. S. **Kipping, ibid., 123,** 2590 (1923); **(b) 126,** 2291 (1924). **(3) (a)** H. **Gilnran, I). J. Peterson, A. W. P. Jarvie, and H. J.** S. **Winkler.** *J. Am. Chem. Soe., 82,* 2076 (1960); **(b) A. W.** F'. **Jarvie, H. J.** S. **Winkler, I). J. Peterson, and H. Gilman,** *ibid.,* **83,** 1921 (1961).

⁽⁴⁾ H. Gilman and A. W. P. Jarvie, *Chem. Ind.* (London), 965 (1960).

⁽⁵⁾ W. **€I. Atwell, unpublished studies.**

⁽⁷⁾ **A. W. P. Jarvie and H. Gilman.** *J. Org. Chem., 26,* 1999 (1901).

⁽⁸⁾ **W. H. Knoth,** .Jr., **and R. V. Lindsey, Jr.,** *ibid.,* **23,** 1392 11938).

⁽¹¹⁾ For **similar reactions of this type see B.** N. Polgov, **N. P. Khari-tanov, and** M. *G.* **Voronkov,** *Zh. Obshch. Khim.,* **24, 801** (1954): *Chem. Abstr.*, 49, 8094 (1955).

⁽¹²⁾ For a **general method see** N. S. **Nametkin. A. V. Topchiev, and F. F. Machus,** *Dokl. Akad. Nauk, SSSR, 81,* **233** (1952): *Chem. Abstr., 41,* 12,281 (1953).

This material was heated under vacuum at 100' for 1 hr. prior to analysis.

Anal. Calcd. for C₅₂H₄₆O₄Si₄: C, 73.79; H, 5.43; Si, 13.26. Found: C, 73.97, 73.98; H, 5.63, 5.54; Si, 13.20, 13.15.

The infrared spectrum showed the bands at 5.8 and 8.2 μ characteristic of the acetate group.¹⁶ The n.m.r. spectrum gave a ratio of aromatic to aliphatic protons of 6.57 (calculated value, 6.67). The methyl groups gave the expected singlet which appeared at **8.28** *r.*

From 1,1,2,2,3,3,4,4-0ctaphenyltetrasilane (111) and Mercuric Acetate.-A mixture of 3.0 g. (0.0041 mole) of 1,1,2,2,3,3,4,4 octaphenyltetrasilane and 2.58 g. (0.0082 mole) of mercuric acetate in 100 ml. of glacial acetic acid was refluxed for 12 hr. Filtration of the cooled reaction mixture gave **1.3** g. **(79%)** of mercury and 3.3 **g**. (95.5%) of a white solid, m.p. 205-230°. Recrystallization of this material from benzene-petroleum ether (b.p. 60-70") afforded 2.5 g. *(722))* of product, m.p. 233-235". **A** mixture melting point with an authentic sample of 1,4-diacetoxy-1,1,2,2,3,3,4,4-octaphenyltetrasilane was not depressed and the infrared spectra were superimposable.

From 1,4-Dichloro-l, 1,2,2,3,3,4,4-octaphenyltetrasilane (IV) and Acetic Anhydride.-A mixture **of** 5.0 g. (0.00625 mole) of **1,4-dichloro-l,l,2,2,3,3,4,4-octaphenyltetrasilane** in 50 ml. of acetic anhydride was refluxed for **24** hr. Filtration gave 4.0 g. (80%) of unchanged starting material, m.p. 185-187° (m.m.p.). Evaporation of the solvent from the filtrate gave 0.85 g. (16 $\%$) of white solid, m.p. 230-235°. Recrystallization from benzenepetroleum ether (b.p. 60-70°) afforded 0.75 g. (14%) of product, $m.p. 233-235° (m.m.p.).$

Hydrolysis of 1,4-Diacetoxy-1,1,2,2,3,3,4,4-octaphenyltetrasilane (II) .— A mixture of 3.0 g. (0.0035 mole) of 1,4-diacetoxy-**1,1,2,2,3,3,4,4-octaphenyltetrasilane** and 50 nil. of *ca.* 0.5 *N* hydrochloric acid was refluxed for 48 hr. Filtration gave 2.5 g. (91.2%) of white solid, m.p. 230–234°. Recrystallization from benzene-petroleum ether (b.p. 60-70') raised the melting point to $234-236^{\circ}$ (87%). A mixture melting point with an authentic sample of monoxide was not depressed. The infrared spectrum showed the strong band at 10.45μ previously reported for this strained cyclic siloxane.'3

Reaction of Hexaphenyldisilane with Mercuric Acetate (Attempted).-A mixture of 5.2 g. (0.01 mole) of hexaphenyldisilane and 6.37 g. (0.02 mole) of mercuric acetate in 100 ml. of sodiumdried benzene was refluxed for *72* hr. Filtration gave 8.0 g. of solid, m.p. **270"** dec. This material was extracted with hot water and filtered to give 5.0 g. (96%) of recovered starting material, m.p. 365-367" (m.m.p.).

Reaction of Decaphenylcyclopentasilane⁹ with Mercuric Acetate (Attempted) .- A mixture of 10.0 g. (0.011 mole) of decaphenylcyclopentasilane and 7.01 g. (0.022 mole) of mercuric acetate in 100 ml. of sodium-dried benzene was refluxed for *72* hr. Filtration gave 11.0 g. of solid, m.p. 275° dec. Extraction of this material with acetone followed by filtration gave 8.5 g. (85%) of recovered starting material, m.p. 456-462° (m.m.p.). **Yo** other pure materials could be isolated.

Acknowledgment.—This research was supported by the United States Air Force under contract AF 33(616)-6163 monitored by the Materials Laboratory, Directorate of Laboratories, Wright Air Development Center, Wright-Patterson AFB, Ohio. The authors are grateful to Dr. Roy King and Mrs, Ikue Ogawa for the n.m.r. and infrared spectral determinations.

(10) **L. J. Rellaniy, "The Infrared Rgectra of Complex Molecules,"** 2nd Ed., Methuen and Co., Ltd., London, 1958, pp. 179, 189.

The Preparation of a Di-Grignard Reagent from 2,2'-Dibromodihenzyl

HENRY GILMAN AND WILLIAM H. ATWELL

Chemical Laboratory, Iowa State University, Ames, Iowa

Recezved *Aprzl 2, 1968*

Incidental to an interesting study concerned with the preparation of **lO,ll-dihydro-5-phenyldibenx** *[b,f]-*

$$
I, X = As, R = C6H6
$$

\n
$$
II, X = P, R = C6H6
$$

arsepin (I) and the analogous phosphepin (II) , it was reported¹ that a di-Grignard reagent could not be prepared-from 2,2'-dibromodibenzyl (111) in diethyl ether. In view of the subsequently established successes in preparing some Grignard reagents in tetrahydrofuran by the general procedure of H. Normant,² we examined this solvent as a reaction medium in place of diethyl ether.

We now wish to report that III reacts with magnesium in tetrahydrofuran to give a soluble di-Grignard reagent. Carbonation of this di-Grignard compound gave a 68% yield of dibenzyl-2,2'-dicarboxylic acid.³ In addition, reaction of the di-Grignard reagent with dichlorodiphenylsilane yielded the previously descrihed 10,11-dihydro-5,5-diphenyldibenzo $[b, f]$ silepin $(IV).4$ The yield of IV, although low, was comparable to that obtained employing 2,2'-dilithiodibenzy13 and dichlorodiphenylsilane.

Experimental6

Dibenzyl-2,Z'-dicarboxylic Acid.-Five milliliters **of** a solution of 5 g. (0.0147 mole) of 2,2'-dibromodibenzyl in 50 **nil.** of tetrahydrofuran was added to 2.43 g. (0.1 g.-atom) of magnesium and 2-3 drops of ethyl iodide. The reaction mixture was refluxed for 5-10 min. at which time a gray color developed and color test I⁶ was positive. The external heat was removed and the addition was continued at a rate sufficient to maintain an exothermic reaction. After dissipation of the heat of reaction, the mixture was stirred for 1 hr., decanted through a glass wool plug into a Dry Ice-ether slurry, and allowed to warm to room teniperature. Extraction of the organic layer with dilute base followed by acidification yielded 2.5 g. (68%) of dibenzyl-2,2'-dicarboxylic acid, m.p. 229-231° (lit.³ m.p. 226-228°).

10,11-Dihydro-5,5-diphenyldibenzo[b,f] silepin.--A tetrahydrofuran solution containing 0.014 mole of the di-Grignard reagent was slowly added to 3.54 g. (0.014 mole) of dichlorodiphenylsilane in 40 ml. of tetrahydrofuran. Color test **I5** was strongly positive after addition. The reaction mixture was refluxed gently for 24 hr. at which time the color test was negative. Acid hydrolysis followed by the usual work-up gave an oil which was chromatographed on alumina. Elution with petroleum ether (b.p. 60- 70°) gave 0.51 g. (10%) of product, m.p. 174-175°, after one recrystallization from ethanbl-petroleum ether $(b.p. 60-70^{\circ})$. **h** mixture melting point with a known sample4 was not depressed and the infrared spectra were identical.

We have found that the n.m.r. spectrum of this compound contains a sharp singlet at 6.83τ with a relative area consistent with the presence of four benzylic protons. In addition, the aromatic

(1) F. **G. Mann. I. T. Millar, and B. B. Smith,** *J. Chem. Soc.,* **1130 (19.5.3). (2) See** H. **Norrnant, "Alkenyln~agnesiurn Halides" in ".\$dvances in Organic Chemistry." Vol. 11, R. A.** Raghael. **E. C. Tnylor, and** H. **Wynberg. Ed., Interscience Publishers.** Inc., **New York. N. Y.,** 1Y60. pp. **1-65.**

(4) R. D. Gorsich, Ph.D. thesis, Iowa State University, 1957.

(5) Reactions involving organometallic reagents were carried out under **an atnrosphere of dry, oxygen-free nitrogen. The tetrahydrofuran was** dried over sodium wire and distilled from lithium aluminum hydride immediately before use. All melting points are uncorrected.

(6) **H. Oilman and** F. **Schulze.** *J.* **Am.** *Chem. Soc..* **47, 2002 (1025).**

⁽³⁾ R. C. Fuson. *J.* **Bm.** *Chem.* Soc., **48, 83.5 (1926).**